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University of Belgrade, Faculty of Economics and Business

Abstract

We propose a simple portfolio management strategy that gauges the leverage based

on the observed implied volatility index (VIX). The strategy involves taking less risk

when the cumulative previous-month VIX is high and more when it is low. We show

that the strategy yields more stable weights and thus requires less rebalancing than

comparable strategies based on realized volatility. As a result, it produces substantially

higher spanning regression alphas when transaction costs are taken into account. We

document this for ten equity factors, six classes of mean-variance efficient portfolios

and 176 anomaly portfolios. We argue that the superior performance of the VIX-

based strategy is driven by its ability to time volatility and tail risk simultaneously,

resulting from the forward-looking nature of the information entailed in the index and

the higher-order return moments embedded in the implied volatility smile.
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1 Introduction

Short-term predictability of returns is elusive, but volatility is highly persistent. Simple

portfolio management strategies that involve scaling the original exposures inversely by

some measure of current risk improve the risk-adjusted performance for investors (Barroso

and Santa-Clara, 2015; Daniel and Moskowitz, 2016; Moreira and Muir, 2017; Liu et al.,

2019; Cederburg et al., 2020; Eisdorfer and Misirli, 2020; Barroso and Detzel, 2021; Wang

and Yan, 2021). This straightforward approach has recently gained considerable traction

among researchers.

Moreira and Muir (2017) show that investors can increase Sharpe ratios by scaling with

realized variance. However, such a strategy may underperform out of the sample (Ceder-

burg et al., 2020) or in the presence of realistic transaction costs (Barroso and Detzel,

2021). Some authors suggest that partial second moments contain valuable information

about future volatility and returns (Barndorff-Nielsen et al., 2010; Feunou et al., 2011;

Patton and Sheppard, 2015; Bollerslev et al., 2020; Atilgan et al., 2020). Wang and Yan

(2021) show that portfolios scaled by downside volatility improve the risk-adjusted perfor-

mance of strategies scaled by total volatility. Others explore the possibility of controlling

for higher-order moments, such as conditional skewness (Bianchi et al., 2022) or a com-

bination of skewness and downside volatility (Fernandes and Batista, 2023). Aside from

(partial) return moments, additional signals have been used to create analogous timing

strategies. These include variables derived from the principal components of a large set

of equity factors (Haddad et al., 2020) or various macroeconomic indicators (Bass et al.,

2017; Amenc et al., 2019; Bender et al., 2019; Gómez-Cram, 2022).

The unifying feature of these volatility timing strategies is that they rely on current

but backward-looking risk measures. In this paper, we exploit the potential of implied

volatility to capture risk. In particular, we use the Chicago Board Options Exchange’s
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implied volatility index (VIX), which measures market expectation of stock return volatility

implied from the supply and demand of S&P500 index options over the next 30 calendar

days. Several reasons motivated this choice. In contrast to realized volatility, implied

volatility is a forward-looking risk metric inferred from the trading activity of sophisticated

option investors. VIX-based trading strategies are commonly used in practice for hedging,

speculation and market timing (Nagel, 2012). VIX is a widely accepted measure of market

sentiment (Whaley, 2000, 2009; Kaplanski and Levy, 2010; Da et al., 2014). It moves

along with the business cycles, spiking in recessions and remaining relatively low during

the anecdotal bubble periods in the US market (see Figure 1). VIX has predictive power

for future returns of diversified portfolios and market indices (Giot, 2005; Banerjee et al.,

2007; Chow et al., 2020). It is negatively correlated with contemporaneous returns and

positively correlated with long-term future returns (Bekaert and Hoerova, 2014). Monthly

adjustments to the S&P500 exposure in an equity/cash portfolio based on the prior month-

end VIX quote not only smooth out the level of market risk over time but also produce

a higher realized Sharpe ratio (Clarke et al., 2020). Holding sentiment-prone stocks when

VIX is low and sentiment-immune stocks when VIX is high generates significantly higher

excess returns than the benchmark long-short portfolios that do not condition on VIX

(Ding et al., 2021). Finally, VIX has predictive power for higher-order moments and helps

capture tail risk (Kelly and Jiang, 2014; Park, 2015; Wang and Yen, 2018; Li et al., 2023).

We propose a simple portfolio management strategy that gauges the leverage by scaling

the original exposure with implied volatility. The strategy involves taking less risk when

the squared sum of daily levels of VIX over the past month is high and vice-versa. We assess

the performance of managed portfolio strategies compared to the original exposures using

spanning regressions à la Moreira and Muir (2017) and directly compare their Sharpe ratios.

Our test assets involve ten equity factors, six classes of mean-variance efficient portfolios
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Figure 1: VIX and the business cycles. The figure shows the annualized previous-
month VIX, in percent, calculated by aggregating the daily data between January 2, 1990,
and June 20, 2023. The shaded bars indicate NBER recessions.

and 176 anomaly portfolios. We compare the VIX-based strategy with the analogous one

that uses realized volatility (RV). Motivated by the success of downside risk measures

suggested by Wang and Yan (2021), we also use the VIX and RV strategies with partial

second moments, resulting in four competing strategies.

We show that VIX-based strategies provide a potential for investors’ utility gains by

timing both volatility and kurtosis. The former comes from the forward-looking nature

of the information entailed in the implied volatility, and the latter from the short-term

implied volatility smiles. Without trading frictions, VIX strategies display a better per-

formance in spanning regressions than those based on realized (downside) volatility but

fare only marginally better in terms of the Sharpe ratio improvements. However, VIX-

based strategies produce more stable weights when we include transaction costs, leading

to less intensive portfolio rebalancing than analogous RV-based strategies. The stability

of weights likely originates from improved kurtosis timing, as it anticipates large return
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swings better. As a result, VIX-managed portfolios produce markedly higher after-cost

alphas than RV counterparts.

This paper contributes to the growing literature on volatility-managed portfolios in

several ways. First, to the best of our knowledge, this is the first study in which a universal

volatility timing strategy is entirely built on an implied rather than realized volatility

metric. Second, it introduces a simple way to scale with downside risk while relying on

VIX. Third, the proposed strategies are implementable in real time, as they alleviate the

problem of look-ahead bias in the scaling coefficients pointed out by Cederburg et al. (2020),

which we achieve through dynamic scaling. We also test our strategies against dynamically

efficient portfolios. Fourth, the paper critically assesses the robustness of the VIX-based

management strategies to transaction costs. VIX-managed portfolios exhibit stability of

weights over time and require less leverage than comparable RV strategies, which is crucial

for any real-time strategy aimed to produce a significant net profit. Fifth, VIX strategies

simultaneously provide a natural market-based mechanism for timing volatility and tail

risk.

The remainder of the paper is organized as follows. In Section 2, we describe the data

and the methodology used for the construction of VIX-managed portfolios. In Section 3,

we present the empirical results. Section 4 concludes.

2 Data and methodology

2.1 Data

Our portfolio management strategy is based on 8,431 daily observations of the CBOE

implied volatility index (VIX) between January 2, 1990, and April 30, 2023. In addition,

we use the returns on the underlying S&P500 index over the same observation period.
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Both series are available from Refinitiv.

We use two groups of test assets. The first consists of ten equity factors used by Moreira

and Muir (2017) and Wang and Yan (2021): the market (MKT), size (SMB), and value

(HML) factors from Fama and French (1993), the profitability (RMW) and investment

(CMA) factors from Fama and French (2015), the momentum (MOM) factor from Carhart

(1997), the investment (IA) and profitability (ROE) factors from Hou et al. (2014), the

expected growth (EG) factor from Hou et al. (2020) and the betting-against-beta factor

(BAB) from Frazzini and Pedersen (2014). Data on MKT, SMB, HML, RMW, CMA and

MOM are from Kenneth French’s website. Data on IA, ROE and EG are from Hou-Xue-

Zhang q-factors data library. Data on BAB are from Andrea Frazzini’s website. We use

daily and monthly data covering the same period as our VIX series, i.e., between January

1990 and April 2023.

The ten equity factors represent a set of proxies for actual sources of non-diversifiable

risk. As such, they are valuable benchmarks in asset pricing models. However, these factors

cannot adequately capture many anomalies (see, for instance, Kozak et al., 2020). There-

fore, we use another group of test assets consisting of a comprehensive panel of anomaly

portfolios from Chen and Zimmermann (2022). The data on 207 anomaly portfolios are

available from the Open Source Asset Pricing website. The sample period varies across the

portfolios from June 1926 to December 2021. This approach is similar to Cederburg et al.

(2020) and Wang and Yan (2021), who use 94 anomaly portfolios. As with the ten equity

factors, we use daily and monthly data that continuously overlap with the respective VIX

series. The resulting sample contains 176 surviving portfolios.
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2.2 Portfolio formation

We form the managed portfolios by changing the risk exposure to the original buy-and-hold

portfolio based on variations in some measure of conditional variance. Specifically, for each

month t, the next-month excess return on the managed portfolio, fσ
t+1, is constructed as:

fσ
t+1 = wtft+1, (1)

where ft is the original excess return of the portfolio. The weight

wt = ct

σ̂2
t

(2)

varies reciprocally to the original portfolio’s conditional variance proxy σ̂2
t . Intuitively, if

our risk measure increases in the current month t, we will decrease the exposure to our

portfolio for the next month t + 1, and vice-versa. Since we work with excess returns, the

weights are unconstrained unless we impose leverage restrictions, such as those considered

by Moreira and Muir (2017).

The scaling coefficient ct is chosen such that the managed and the original portfolio

have the same sample standard deviation calculated using only the information available

at time t, i.e.,
t∑

s=1

(
fσ

s − fσ
)2

=
t∑

s=1

(
fs − f

)2
, (3)

where fσ and f are the average excess returns calculated using the managed and unman-

aged series that end in month t. We use the scaling condition (3) iteratively to obtain the

scaling constant ct for each month t = tmin + 1, tmin + 2, . . . , T , where T is the length of

the monthly series. We use tmin = 36, i.e., burn in the first 36 months, to allow for enough

observations to calculate the sample standard deviation. This type of scaling avoids the
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issue pointed out by Cederburg et al. (2020) of using ex-post optimal weights, which are

not available to investors in real-time. The issue was raised since many prior studies scaled

the excess returns by a constant obtained by fixing the full-sample unconditional variances

of managed and optimal portfolios.

We construct four managed portfolios for each original portfolio we consider, using

Equation (1) based on different proxies for the conditional variance σ̂2
t . We use the following

proxies:

1. Implied volatility (”VIX-managed strategy”), where

σ̂2
t = 1

12
∑
d∈t

VIX2
d, (4)

and VIXd is the observed value of the CBOE implied volatility index on day d in

month t. Given that the VIX data are annualized, but the excess returns are monthly,

the 1/12 fraction in front of the sum in Equation (4) reconciles the scaling.

2. Implied volatility that captures downside risk (”Downside VIX-managed strat-

egy”), in which

σ̂2
t = 1

12
∑
d∈t

VIX2
d 1(SPXd<0), (5)

where 1(·) is the indicator function and SPXd is the observed daily excess return on

the S&P500 market index on day d in month t.

3. Realized volatility (”RV-managed strategy”), in which

σ̂2
t =

∑
d∈t

(
fd − f t

)2
, (6)
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where fd is the observed return on the original portfolio on day d in month t, and

f t = 1
Nt

∑
d∈t

fd

is the average of daily returns in month t in which there were Nt trading days.

4. Realized volatility that captures downside risk (”Downside RV-managed strat-

egy”), where

σ̂2
t =

∑
d∈t

(
fd − f t

)2
1(fd<0). (7)

If there are no negative daily excess returns in month t, we use the ordinary realized

volatility for that month instead.

In strategies 1 and 2, we use VIX and the S&P500 index as the underlying asset,

irrespective of the test portfolio. In contrast, in strategies 3 and 4, we calculate the

realized (semi)variance using returns on the test portfolio. We do this for practical reasons,

simplifying the implied-volatility-based strategies as much as possible. An obvious—albeit

more tedious—alternative is to use the implied volatility of each asset in the test portfolio.

However, this introduces the issue of insufficient trading liquidity of many option contracts

and complicates the implementation immensely. Our rationale here is that by relying on

VIX as a general measure of market sentiment, we should be able to capture the general

highs and lows of any diversified portfolio.

2.3 Performance evaluation

We follow the approach of Moreira and Muir (2017) and run a time-series regression of the

managed portfolio excess returns on their original counterparts:

fσ
t = α + βft + εt. (8)
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This regression is used to evaluate the performance of the managed portfolios. A significant

positive intercept α indicates that volatility timing improves the risk-return relationship of

the managed portfolio over the original buy-and-hold strategy. By using each conditional

variance proxy defined by Equations (4)–(7) to obtain the managed portfolio excess return

fσ
t , we can compare the embedded strategies’ ability to expand the mean-variance frontier.

We estimate the coefficients of the spanning regression given by Equation (8) for a

broad set of test assets that represent mimicking portfolios to genuine systemic sources of

risk or otherwise contribute to capturing economy-wide shocks. As described in Subsec-

tion 2.1, we use ten equity factors and 176 anomaly portfolios as individual test assets.

However, Moreira and Muir (2017) argue that a single-factor volatility timing strategy

may not necessarily improve the performance relative to the best buy-and-hold strategy

for an investor with access to multiple factors. A more expansive investment universe for

investors with different levels of sophistication can be achieved by extending the analysis

to a multifactor setting, where the investors can time risk and gauge the leverage of a

mean-variance efficient (MVE) portfolio. DeMiguel et al. (2021) show that volatility man-

agement of the multifactor portfolio weights outperforms the original multifactor portfolio,

net of transaction costs, regardless of whether sentiment is high or low.

The original MVE portfolio excess return is simply a linear combination of factor excess

returns Ft+1:

fMV E
t+1 = b′

tFt+1. (9)

In Equation (9), bt s the vector of in-sample Sharpe ratio-maximizing factor weights:

bt ∝ V−1
t µt, (10)

defined up to a scalar constant, where Vt and µt are the sample covariance matrix and the
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sample mean for the set of factor excess returns using only their history available at time t.

This MVE portfolio construction is dynamic and free from any look-ahead bias. It differs

from the one with static weights that Moreira and Muir (2017) applied. In addition to the

market excess return (MKT), we build six universes of factors, using the Fama and French

(1993) three factors (FF3), the FF3 augmented by the Carhart (1997) momentum factor

(MOM), the Fama and French (2015) five factors (FF5), the FF3 augmented by MOM, the

Hou et al. (2014, 2020) three factors (HXZ), and the HXZ augmented by MOM. This set

of factor universes represents a combination of the ones considered by Moreira and Muir

(2017), Wang and Yan (2021) and Fernandes and Batista (2023).

We next construct the managed MVE portfolio excess return in analogy to Equation

(1):

fMV E,σ
t+1 = wtf

MV E
t+1 , (11)

applying the same principles for calculating the weight wt and the scaling parameter as in

the single-factor case. Finally, the spanning regression for the MVE portfolio is simply

fMV E,σ
t = α + βfMV E

t + εt. (12)

We assess the significance of each of the spanning regression intercepts α via the usual

t-statistics, using the heteroskedasticity-consistent standard errors of Huber (1967) and

White (1980). Given that the scaling condition is determined by Equation (3), the co-

efficient ct for each management strategy will change over time, and the unconditional

variances will not be the same for the managed and the original portfolios. Therefore,

assessing the performance of strategies based on alphas alone is insufficient to infer conclu-

sions about the relationship between their Sharpe ratios. We compare the Sharpe ratios of
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managed and original strategy, respectively, by calculating their difference:

∆ = SRσ − SR. (13)

We test the statistical significance of this difference using the procedure of Wright et al.

(2012). This test is more general than others commonly applied throughout the literature,

as it allows testing for equality of multiple Sharpe ratios and only assumes that the excess

returns are stationary and ergodic. It is not limited to pairwise tests, nor does it assume

that returns have to be normally distributed (Jobson and Korkie, 1981; Memmel, 2003),

it does not require a bootstrap procedure (Ledoit and Wolf, 2008), and the condition that

the returns are independent and identically distributed is not necessary (Leung and Wong,

2008).

3 Results

3.1 Baseline results

Table 1 shows the results of spanning regressions for the ten equity factors. Across all

four managed strategies (panels A through D), the alphas are positive and significant at

a 5% level for MKT, MOM, ROE, EG and BAB factors.1 MKT, MOM, ROE and BAB

were also highly significant for the RV-managed strategy of Moreira and Muir (2017) and

downside volatility-managed strategy of Wang and Yan (2021), while the EG was highly

significant for similar strategies considered in Fernandes and Batista (2023). We do not find

significant alphas for SMB, HML, RMW, CMA and IA, which may originate from a shorter
1For expositional brevity, we only show the results for univariate spanning regressions. The results

obtained when controlling for Fama and French (1993) three factors, Carhart (1997) four factors and Fama
and French (2015) five factors are available upon request. They do not provide any substantial qualitative
changes to the results obtained in the univariate case. We treat the multivariate case through MVE
portfolios (Tables 3 and 4), allowing a broader set of factors to be exploited more naturally.
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sample used in this paper. Thus, all managed strategies show promising profit potential

for at least five factors relative to their unmanaged versions. There is a subtle difference

between the strategies, however. When alphas are significant, they exhibit slightly higher

numerical values for VIX- and downside VIX-managed portfolios than their corresponding

RV counterparts. Irrespective of the significance of the intercepts, strategies that exploit

VIX also provide a better fit in the spanning regressions, having markedly higher R2s

and lower root mean squared errors (RMSE). The combination of higher alphas and lower

RMSE translates to higher annualized appraisal ratios of these strategies compared to the

RV-based ones for MKT and BAB. We should expect the most considerable improvement

in the Sharpe ratios for these two factors (cf. Table 2).

Figure 2 provides further intuition for the results in Table 1. Following our VIX-based

management strategy, we sort time-series returns on five Fama-French factors (MKT, SMB,

HML, RMW and CMA) and momentum (MOM). The sorts are based on the previous

month’s VIX, calculated from the daily VIX levels using Equation (4). They are then used

to sort the following month’s daily returns on each factor. We group them into quintiles,

from months in which VIX was in the lowest historical fifth to months in which it was

in the highest fifth of its values. The figure shows each factor’s annualized average and

standard deviation of next-month returns.

Unlike lagged realized volatility (Moreira and Muir, 2017), the lagged VIX is inversely

related to the average return on the market portfolio (MKT), consistently with the findings

of Bekaert and Hoerova (2014). On the other hand, sorting on lagged VIX displays no

visible relationship with the average returns on the remaining five factors. However, for

all factors, there is a strong relationship between lagged VIX and current volatility: high

implied volatility of the S&P500 in the previous month is associated with high factor

volatility. Therefore, VIX can be used for the volatility timing of any of the Fama-French
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factors and momentum, and in addition, it can time the return of the market portfolio.

Table 1: Spanning regressions for the ten equity factors. This table shows results from univariate
spanning regressions, given by fσ

t = α + βft + εt, where fσ
t is the monthly return for the managed

factor, and ft is the monthly return for the original factor. The managed strategies are based
on implied volatility and realized volatility (RV). Panels A through D report the results for the
managed strategy based on VIX, downside VIX, RV and realized downside RV, respectively. The
reported alphas are in annualized percentage terms. The appraisal ratio is α/σε, where σε is the
root mean square error (RMSE). The sample period for all regressions is between 1990-01 and 2023-
04. MKT, SMB and HML are from Fama and French (1993), RMW and CMA are from Fama and
French (2015), MOM is from Carhart (1997), IA, ROE and EG are from Hou et al. (2014, 2020)
and BAB is from Frazzini and Pedersen (2014). Numbers in parentheses are heteroskedasticity-
consistent standard errors of Huber (1967) and White (1980). The asterisks indicate the usual
significance levels: *** for significance at 1%; ** for significance at 5%; * for significance at 10%.

MKT SMB HML RMW CMA MOM IA ROE EG BAB

Panel A: VIX-managed strategy

Alpha (α) 3.07∗∗ −1.04 0.23 0.77 −0.06 3.18∗∗∗ 0.27 2.44∗∗∗ 1.59∗∗∗ 6.69∗∗∗

(1.44) (0.84) (0.80) (0.69) (0.57) (1.19) (0.59) (0.79) (0.57) (1.06)
R2 0.64 0.70 0.70 0.73 0.68 0.60 0.67 0.67 0.68 0.68
RMSE 33.19 21.91 20.33 17.07 14.93 35.87 15.48 18.54 15.03 22.65
Appraisal ratio 0.32 −0.16 0.04 0.16 −0.01 0.31 0.06 0.46 0.37 1.02

Panel B: Downside VIX-managed strategy

Alpha (α) 3.39∗∗∗ −0.16 0.37 0.38 0.18 3.90∗∗∗ 0.33 2.05∗∗∗ 1.50∗∗∗ 7.86∗∗∗

(1.27) (0.88) (0.81) (0.70) (0.61) (1.26) (0.59) (0.78) (0.55) (1.11)
R2 0.56 0.64 0.58 0.60 0.58 0.52 0.58 0.56 0.54 0.58
RMSE 32.22 23.53 24.74 22.37 17.56 39.33 17.64 22.04 17.32 27.17
Appraisal ratio 0.36 −0.02 0.05 0.06 0.04 0.34 0.06 0.32 0.30 1.00

Panel C: RV-managed strategy

Alpha (α) 3.13∗∗∗ −0.03 0.68 0.78 −0.19 2.60∗∗∗ 0.45 2.43∗∗∗ 1.26∗∗ 6.51
(1.14) (0.67) (0.85) (0.58) (0.66) (0.83) (0.74) (0.66) (0.53) (1.07)

R2 0.35 0.57 0.27 0.34 0.42 0.30 0.37 0.33 0.48 0.24
RMSE 38.53 25.81 34.08 17.23 17.45 27.30 21.69 20.43 14.32 41.38
Appraisal ratio 0.28 −0.00 0.07 0.16 −0.04 0.33 0.07 0.41 0.30 0.54

Panel D: Downside RV-managed strategy

Alpha (α) 2.41∗∗ −0.36 0.53 0.74 −0.32 2.09∗∗∗ 0.48 2.40∗∗∗ 1.25∗∗ 6.45∗∗∗

(0.94) (0.66) (0.78) (0.55) (0.68) (0.72) (0.78) (0.63) (0.50) (1.05)
R2 0.31 0.55 0.29 0.32 0.41 0.27 0.37 0.32 0.46 0.23
RMSE 36.45 25.97 30.53 16.32 16.76 25.71 21.68 19.31 13.93 39.73
Appraisal ratio 0.23 −0.05 0.06 0.16 −0.07 0.28 0.08 0.43 0.31 0.56
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Figure 3 plots the cumulative nominal returns to the VIX-managed and RV-managed

market factor compared to a buy-and-hold strategy from January 1993 to April 2023. We

track a dollar invested in each of the three strategies at the beginning of the sample. VIX-

and RV-based strategies provide more steady gains than the buy-and-hold approach. These

gains are a direct consequence of their spanning regression alphas being both above 3%

per year (see Table 1). They also behave more smoothly in recessions, avoiding substantial

losses in high-volatility episodes. The top three monthly losses of the market portfolio

in our sample happened in July 1998 (investors reflecting on poor corporate earnings re-

ports), September 2008 (bankruptcy of Lehman Brothers) and February 2020 (COVID-19

pandemic). At the same time, the top three losses for the VIX-managed portfolio oc-

curred in September 2018, April 2019 and January 2020, while the top three losses for the

RV-managed portfolio happened in June 1996, September 2018 and April 2019. Volatility-

timing strategies take more risk in periods of low volatility in the market (in our sample,

these are 1993–1997, 2004–2007 and 2013–2019, cf. Figure 1), and this is when they typ-

ically suffer biggest losses. They are also conservative when the market is very volatile

– precisely when the buy-and-hold strategy loses most of the investment. However, the

VIX-managed portfolio accumulates to $14.29 at the end of the sample, compared to $8.63

for the buy-and-hold strategy. In contrast, a dollar invested in the RV-managed portfolio

would be worth $8.66 in April 2023, a mere three cents above the buy-and-hold strategy.

Table 2 compares the annualized Sharpe ratios of the managed factor returns with

those of the original ones for the ten equity factors. The first row of the table shows the

Sharpe ratios for the original factors. At the same time, the lower panel displays the Sharpe

ratio differences (∆) between the managed and the original factor returns. The statistical

significance of the differences in Sharpe ratios is measured by Wright et al. (2012) test
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Figure 2: VIX-based return and volatility timing. This figure represents time-series
sorts based on the previous month’s VIX for five Fama-French factors (MKT, SMB, HML,
RMW and CMA) and momentum (MOM). The time series of the previous month’s VIX
was constructed by aggregating the daily data between January 2, 1990, and April 28,
2023, and used to sort the following month’s daily returns. We use five buckets, where the
”Low/High” shows the properties of cumulative daily returns over the month in which VIX
was in the lowest/highest fifth of its values. We show each factor’s annualized average and
standard deviation of next-month returns.

statistics, reported in the brackets.2 We see statistically significant improvements in MOM,

ROA and BAB factors for all managed strategies. The MOM Sharpe ratio improvement is

more than doubled across all strategies, adding between 0.36 and 0.42 on top of the original

0.28. This result is consistent with Barroso and Santa-Clara (2015), who demonstrated that
2Under the null hypothesis that ∆ = 0, the Wright et al. (2012) test statistic is asymptotically χ2

1. If
we test the equality of k different Sharpe ratios, the test statistic converges in distribution to χ2

k.
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Figure 3: Cumulative returns on the VIX-managed market portfolio. The figure
shows the cumulative returns on a buy-and-hold strategy versus VIX-managed and RV-
managed strategies for the market portfolio from 1993-01 to 2023-04.

strategies that rely on timing momentum have exceptional performance. MOM and BAB

Sharpe ratios are also improved in the realized (semi)volatility strategies of Fernandes and

Batista (2023).

Except for CMA and ROE, the Wright et al. (2012) test statistics relying on implied

volatility scaling are higher than the ones based on realized volatility. The downside VIX

strategy exactly doubles the original Sharpe ratio of 0.67 for BAB. The VIX-based scaling

is improving the Sharpe ratios of MKT and EG more than any other management strategy,

adding 0.10 and 0.13, respectively,3 albeit these differences are not statistically significant.

We now turn to the multivariate setting. Table 3 shows the results of spanning re-

gressions for the MVE portfolios, given by Equation (12). The alphas are all positive

and, except for the Fama and French (1993) three-factor model, highly significant. The

VIX-managed or the downside VIX-managed efficient portfolios produce notably higher
3This is consistent with Clarke et al. (2020), who find that the improvement in Sharpe ratio from a static

50:50 exposure to cash and the S&P500 portfolio to a dynamic strategy that varies the market exposure
based on the inverse of the prior month-end VIX quote, is around 0.09.
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alphas than the (downside) RV-based strategies. The improvement from RV-managed to

VIX-managed alphas ranges between 20 basis points for the Hou et al. (2014, 2020) three

factors (HXZ) and 40 basis points for the Carhart (1997) four factors (FF3 + MOM). The

corresponding increments for the downside strategies in the identical factor universes are

15 and 125 basis points.

Similar to the results of the univariate spanning regressions (Table 1), the quality of fit

is also better for implied than realized volatility-based strategies, having generally higher

values of R2 and lower values of RMSE. Appraisal ratios also tend to be the highest for

downside VIX-managed MVE portfolios. Except for the Fama and French (1993) three-

factor model, they are all economically large and range from 0.27 to 0.53. In contrast,

the highest appraisal ratio for an RV-managed strategy is 0.46, obtained for the Fama and

French (2015) five factors augmented by momentum (FF5 + MOM).

The improvement in Sharpe ratios between managed and unmanaged MVE portfolios is

slight. Being already efficient, the original annualized Sharpe ratios, shown in the first row

of Table 4, are quite large, ranging between 0.54 and 0.98. The improvement introduced

by volatility timing is statistically significant only for the Carhart (1997) four factors (FF3

+ MOM), likely as a result of the ability to avoid momentum crashes described by Barroso

and Santa-Clara (2015). As in the univariate case (Table 2), the Wright et al. (2012)

statistic is typically the highest for VIX-managed MVE portfolios, dominating all other

strategies in six out of seven universes considered.

Note that the Sharpe ratios of the original and the managed MVE portfolios are directly

comparable since the optimal weights for both categories are constructed in the sample.

Hence, they do not suffer from the understatement/overstatement issue as in Moreira and

Muir (2017).
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Table 2: Sharpe ratios for the ten equity factors. This table compares the annualized Sharpe
ratios of the managed factor returns with those of the original ones. The managed strategies are
based on implied volatility and realized volatility (RV). The first row shows the Sharpe ratios for
the ten original factors. The lower panel of the table displays the Sharpe ratio differences (∆)
between the managed and the original factor returns. The managed strategies are based on VIX,
downside VIX, RV and realized downside RV, respectively. The sample period is between 1990-01
and 2023-04. MKT, SMB and HML are from Fama and French (1993), RMW and CMA are from
Fama and French (2015), MOM is from Carhart (1997), IA, ROE and EG are from Hou et al. (2014,
2020) and BAB is from Frazzini and Pedersen (2014). Numbers in brackets are the test statistics of
Wright et al. (2012) for the differences in Sharpe ratios. The asterisks indicate the usual significance
levels: *** for significance at 1%; ** for significance at 5%; * for significance at 10%.

MKT SMB HML RMW CMA MOM IA ROE EG BAB

Original Sharpe 0.54 0.09 0.15 0.46 0.42 0.28 0.43 0.48 0.93 0.67

Sharpe ratio differences (∆)

VIX 0.10 −0.13 0.04 0.05 −0.14 0.36∗∗∗ −0.16 0.27∗∗ 0.13 0.61∗∗∗

[0.62] [1.48] [0.18] [0.22] [1.66] [7.78] [2.04] [4.49] [1.24] [28.47]

Downside VIX 0.08 −0.10 0.07 0.00 −0.14 0.36∗∗∗ −0.15 0.19 0.02 0.67∗∗∗

[0.29] [0.75] [0.31] [0.00] [1.09] [6.91] [1.33] [1.69] [0.01] [27.08]

RV 0.05 −0.06 0.02 −0.02 −0.23 0.42∗∗ −0.12 0.45∗∗∗ −0.01 0.54∗∗∗

[0.07] [0.26] [0.01] [0.01] [2.26] [5.85] [0.59] [7.40] [0.01] [10.51]

Downside RV 0.04 −0.09 0.03 −0.04 −0.22 0.40∗∗ −0.11 0.43∗∗ −0.03 0.56∗∗∗

[0.04] [0.48] [0.03] [0.05] [2.03] [5.41] [0.50] [6.41] [0.05] [10.82]

19



Table 3: Spanning regressions for mean-variance efficient (MVE) portfolios. The MVE portfolios
are formed using various combinations of equity factors. These underlying factors can be consid-
ered the relevant investment universe for various levels of investors’ sophistication. The spanning
regressions are given by fMV E,σ

t = α + βfMV E
t + εt, where fMV E,σ

t is the monthly return for
managed MVE portfolio, and fMV E

t is the monthly return for the original MVE portfolio. The
managed strategies are based on implied volatility and realized volatility (RV). Panels A through D
report the results for the managed strategy based on VIX, downside VIX, RV and realized down-
side RV, respectively. The appraisal ratio is α/σε, where σε is the root mean square error (RMSE).
The sample period for all regressions is between 1990-01 and 2023-04. The factors considered are
the market excess return (MKT), the Fama and French (1993) three factors (FF3), the Carhart
(1997) momentum factor (MOM), the Fama and French (2015) five factors (FF5), and the Hou
et al. (2014, 2020) three factors (HXZ). Numbers in parentheses are heteroskedasticity-consistent
standard errors of Huber (1967) and White (1980). The asterisks indicate the usual significance
levels: *** for significance at 1%; ** for significance at 5%; * for significance at 10%.

MKT FF3 FF3+MOM FF5 FF5+MOM HXZ HXZ+MOM

Panel A: VIX-managed strategy

Alpha (α) 3.07∗∗ 0.56 1.67∗∗∗ 0.61∗ 0.99∗∗∗ 1.44∗∗∗ 1.43∗∗∗

(1.44) (0.54) (0.50) (0.32) (0.31) (0.53) (0.52)
R2 0.64 0.64 0.61 0.69 0.68 0.68 0.67
RMSE 33.19 15.02 12.75 8.47 7.98 13.85 13.79
Appraisal ratio 0.32 0.13 0.45 0.25 0.43 0.36 0.36

Panel B: Downside VIX-managed strategy

Alpha (α) 3.39∗∗∗ 0.87∗ 2.24∗∗∗ 0.80∗∗ 1.20∗∗∗ 1.29∗∗ 1.27∗∗∗

(1.27) (0.53) (0.54) (0.35) (0.36) (0.53) (0.51)
R2 0.56 0.54 0.53 0.58 0.59 0.53 0.53
RMSE 32.22 16.85 14.58 10.18 9.47 16.61 16.40
Appraisal ratio 0.36 0.18 0.53 0.27 0.44 0.27 0.27

Panel C: RV-managed strategy

Alpha (α) 3.13∗∗∗ 0.25 1.27∗∗∗ 0.57∗∗∗ 0.73∗∗∗ 1.24∗∗∗ 1.20∗∗∗

(1.14) (0.22) (0.39) (0.19) (0.20) (0.43) (0.45)
R2 0.35 0.44 0.42 0.41 0.35 0.46 0.46
RMSE 38.53 7.21 10.81 5.52 5.55 11.62 12.21
Appraisal ratio 0.28 0.12 0.41 0.36 0.46 0.37 0.34

Panel D: Downside RV-managed strategy

Alpha (α) 2.41∗∗ 0.12 0.99∗∗∗ 0.54∗∗∗ 0.73∗∗∗ 1.14∗∗∗ 1.08∗∗∗

(0.94) (0.16) (0.32) (0.18) (0.19) (0.41) (0.42)
R2 0.31 0.42 0.41 0.39 0.32 0.44 0.44
RMSE 36.45 5.78 8.91 5.39 5.57 11.30 11.83
Appraisal ratio 0.23 0.07 0.38 0.35 0.45 0.35 0.32
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Table 4: Sharpe ratios for mean-variance efficient (MVE) portfolios. The MVE portfolios are
formed using various combinations of equity factors. These underlying factors can be considered the
relevant investment universe for various levels of investors’ sophistication. This table compares the
annualized Sharpe ratios of the managed MVE portfolio returns with those of the original MVE
portfolio returns. The managed strategies are based on implied volatility and realized volatility
(RV). The first row shows the Sharpe ratios for the original MVE portfolios. The lower panel of the
table displays the Sharpe ratio differences (∆) between the managed and the original MVE portfolio
returns. The managed strategies are based on VIX, downside VIX, RV and realized downside RV,
respectively. The sample period is between 1990-01 and 2023-04. The factors considered are the
market excess return (MKT), the Fama and French (1993) three factors (FF3), the Carhart (1997)
momentum factor (MOM), the Fama and French (2015) five factors (FF5), and the Hou et al. (2014,
2020) three factors (HXZ). Numbers in brackets are the test statistics of Wright et al. (2012) for the
differences in Sharpe ratios. The asterisks indicate the usual significance levels: *** for significance
at 1%; ** for significance at 5%; * for significance at 10%.

MKT FF3 FF3+MOM FF5 FF5+MOM HXZ HXZ+MOM

Original Sharpe 0.54 0.56 0.63 0.94 0.98 0.97 0.98

Sharpe ratio differences (∆)

VIX 0.10 0.00 0.33∗∗ −0.10 0.10 0.11 0.11
[0.62] [0.00] [5.72] [0.71] [0.65] [0.88] [0.88]

Downside VIX 0.08 0.02 0.34∗∗ −0.11 0.10 −0.02 −0.01
[0.29] [0.02] [4.59] [0.75] [0.55] [0.01] [0.01]

RV 0.05 0.02 0.34∗∗ −0.03 0.13 0.04 0.03
[0.07] [0.02] [4.22] [0.04] [0.53] [0.06] [0.03]

Downside RV 0.04 −0.02 0.37∗∗ −0.04 0.10 0.00 0.00
[0.03] [0.02] [5.24] [0.09] [0.34] [0.00] [0.00]

Table 5 presents spanning regression alphas and Sharpe ratio differences (∆) for the 176

anomaly portfolios. We show the number of positive, negative and significant alphas and

differences using the 5% significance levels. We find that between 65 and 73 percent of the

anomalies exhibit positive spanning regression alphas, depending on the applied strategy.

The results on this broader sample are consistent with those for the ten equity factors

and seven MVE portfolios: VIX-managed and downside VIX-managed anomaly portfolios

tend to outperform the original counterparts more often than the RV and downside RV

strategies. They produce 47 and 42 alphas statistically significant at the 5% level, compared
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to 38 and 41 for the two RV methods. Only six VIX-managed portfolio alphas (around

three percent) are negative and significant. The downside RV strategy generates a negative

alpha on 48 occasions and a significant and negative alpha in only one case.

The results for Sharpe ratio differences are less convincing: the instances with positive

and negative differences are comparable for all four strategies, and the number of positive

differences that are significant at the 5% level ranges between 16 and 21. Therefore,

volatility timing may not be as effective for anomaly portfolios as for the individual factors

regarding the risk-return tradeoff, irrespective of the applied strategy. However, the most

apparent asymmetry between the differences is for the downside VIX strategy, with 16

significant positive and five significant negative deltas.

Table 5: Spanning regression alphas and Sharpe ratio differences for the 176 anomaly portfolios.
The left column of this table reports the results from univariate spanning regressions of managed
portfolio returns on the corresponding original portfolio returns. It shows the number of alphas
that are positive and negative. The numbers in brackets show how many alphas are significant
at the 5% level. Statistical significance of the alpha estimates is based on heteroskedasticity-
consistent standard errors of Huber (1967) and White (1980). The spanning regressions are given
by fσ

t = α + βft + εt, where fσ
t is the monthly return for the managed portfolio and ft is the

monthly return for the original portfolio. The right column displays the corresponding results for
Sharpe ratio differences (∆) between the managed and the original portfolio returns. It counts the
instances in which such differences are positive and negative. The numbers in brackets show how
many differences are significant at the 5% level. The statistical significance of the ∆ estimates is
based on Wright et al. (2012) test for the differences in Sharpe ratios. The managed strategies are
based on VIX, downside VIX, RV and realized downside RV, respectively. The sample period is
between 1990-01 and 2023-04. All anomaly portfolios are from Chen and Zimmermann (2022).

Alpha (α) Sharpe ratio difference (∆)

α > 0 [Signif.] α < 0 [Signif.] ∆ > 0 [Signif.] ∆ < 0 [Signif.]

VIX 114 [47] 62 [6] 91 [16] 85 [18]

Downside VIX 124 [42] 52 [4] 88 [16] 88 [5]

RV 127 [38] 49 [2] 91 [21] 85 [18]

Downside RV 128 [41] 48 [1] 91 [19] 85 [18]
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3.2 Transaction costs

Timing strategies typically involve frequent trades. This aspect is a challenging one for

their implementation in practice. If they are to provide economically significant profits to

investors, the spanning regression alphas of managed portfolios should survive transaction

costs. Here, we adopt the approach of Wang and Yan (2021), who extend Moreira and

Muir (2017) and consider a set of stylized trading costs of 1, 10, 14, 25 and 50 basis points.

The cost of 1 bp comes from Fleming et al. (2003) and is probably too tiny for more

complex portfolios such as MVE or anomaly portfolios that are difficult to mimic with

passive strategies. The costs of 10 and 14 bp are from Frazzini et al. (2012), the latter

representing an addition of 4 bp to account for high volatility episodes. They are more

appropriate for sophisticated institutional investors who avoid high liquidity demands. The

costs of 25 and 50 bp originate from Hasbrouck (2009), Novy-Marx and Velikov (2016) and

Barroso and Detzel (2021), and are considered more representative of liquidity-demanding

equity strategies.

Table 6 reports the results of the spanning regressions for the ten equity factors before

and after accounting for transaction costs. For each factor and trading strategy, we first

illustrate the managed factor’s stability by showing the average absolute change in monthly

weights. The VIX-managed strategy is by far the most stable, with the average |∆wt|

between 0.24 and 0.29, followed by the downside VIX, where these values range from 0.43

to 0.57. The VIX-based values are considerably below the average absolute weight changes

for the RV-managed factors (between 0.48 and 0.63) and the downside RV-managed factors

(between 0.45 and 0.66). Thus, to implement the VIX-managed strategy, we typically have

to buy or sell around a quarter of our exposure per month, while running an RV-managed

portfolio may require trading as much as half or even two-thirds of our holdings every

month.
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The difference in stability immediately translates to heterogeneous sensitivity to trans-

action costs. Indeed, the spanning regression alphas that were statistically significant before

applying the transaction costs remain so across several cost levels for VIX and downside

VIX strategies. At the cost level of 25 bp, the VIX-managed MKT factor alpha is statisti-

cally significant at the 10% level, while the MOM and EG alphas are statistically significant

at the 5% level. The MKT and MOM after-cost alphas also have economically significant

values of 2.23% and 2.30% per annum. The alphas for ROE and BAB are highly significant

even for the cost of 50 bp, with annualized values of 1.49% and 4.56%, respectively.

In contrast, for RV and downside RV strategies, the after-cost alphas fall more rapidly:

at 25 bp, the alpha for MKT, MOM, ROE, EG and BAB ceases to be statistically signifi-

cant. The RV-managed MKT alpha at this cost is 1.23%, an entire percentage point below

the corresponding value for the VIX-managed strategy. The RV-managed MOM factor

alpha is only 0.29% – more than two percentage points below the VIX-based counterpart.

The momentum alpha is already insignificant at the 5% level for the cost of 14 bp. At

50 bp, the after-cost alphas for the RV-managed MOM, ROE and BAB factors become

significantly negative. The same effect happens for the downside RV-managed MOM and

BAB factors.

Where applicable, we report the break-even cost for each factor and strategy, which is

the implied transaction cost required to drive the alphas to zero.4 For the factors with sig-

nificant frictionless alphas (MKT, MOM, ROE, EG and BAB), we observe a sharp decline

in break-even costs from panel A to panel D, indicating that the VIX-managed strategies

are more robust to transaction costs than their (downside) RV-based counterparts. For

example, the break-even costs for the VIX-managed MKT and MOM factors are 91 bp. In

comparison, the RV-managed strategy for the same factors becomes already unprofitable
4The break-even cost cannot be assessed if all the point estimates of before- and after-cost alphas are

negative, even if they are statistically insignificant.
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at 41 and 28 bp, respectively. For ROE and BAB, the difference is even more extreme: the

RV strategy breaks at 30 and 29 bp, while VIX-based alphas persist until the costs reach

128 and 157 bp, respectively.

Table 6: This table reports spanning regressions alphas for the ten equity factors after accounting
for transaction costs. The managed strategies are based on implied volatility and realized volatility
(RV). Panels A through D report the results for the managed strategy based on VIX, downside
VIX, RV and realized downside RV, respectively. Average |∆wt| is the average absolute change in
monthly weights. The reported alphas are in annualized percentage terms. We consider five levels
of transaction costs: 1 bp, 10 bp, 14 bp, 25 bp and 50 bp. We also report zero-cost alphas for
comparison. Break-even costs are the implied transaction costs (in basis points) required to drive
the alphas to zero, where applicable. The sample period for all regressions is between 1990-01 and
2023-04. MKT, SMB and HML are from Fama and French (1993), RMW and CMA are from Fama
and French (2015), MOM is from Carhart (1997), IA, ROE and EG are from Hou et al. (2014,
2020) and BAB is from Frazzini and Pedersen (2014). The asterisks indicate the usual significance
levels under heteroskedasticity-consistent standard errors of Huber (1967) and White (1980): ***
for significance at 1%; ** for significance at 5%; * for significance at 10%.

MKT SMB HML RMW CMA MOM IA ROE EG BAB

Panel A: VIX-managed strategy

Average |∆wt| 0.27 0.25 0.24 0.27 0.25 0.29 0.24 0.27 0.24 0.26

Transaction costs After-cost alpha (α)

0 bp 3.07∗∗ −1.04 0.23 0.77 −0.06 3.18∗∗∗ 0.27 2.44∗∗∗ 1.59∗∗∗ 6.69∗∗∗

1 bp 3.03∗∗ −1.05 0.22 0.76 −0.07 3.14∗∗∗ 0.26 2.42∗∗∗ 1.57∗∗∗ 6.65∗∗∗

10 bp 2.73∗∗ −1.09∗ 0.19 0.68 −0.10 2.83∗∗∗ 0.24 2.25∗∗∗ 1.35∗∗∗ 6.26∗∗∗

14 bp 2.60∗∗ −1.11∗ 0.18 0.65 −0.11 2.69∗∗ 0.23 2.17∗∗∗ 1.25∗∗ 6.09∗∗∗

25 bp 2.23∗ −1.17∗ 0.14 0.56 −0.15 2.30∗∗ 0.19 1.96∗∗∗ 0.98∗∗ 5.62∗∗∗

50 bp 1.39 −1.30∗ 0.06 0.34 −0.23 1.42 0.12 1.49∗∗ 0.37 4.56∗∗∗

Break-even cost (bp) 91 68 90 91 89 128 65 157

Panel B: Downside VIX-managed strategy

Average |∆wt| 0.47 0.48 0.47 0.55 0.48 0.57 0.46 0.52 0.43 0.54

Transaction costs After-cost alpha (α)

0 bp 3.39∗∗∗ −0.16 0.37 0.38 0.18 3.90∗∗∗ 0.33 2.05∗∗∗ 1.50∗∗∗ 7.86∗∗∗

1 bp 3.34∗∗∗ −0.17 0.37 0.36 0.18 3.81∗∗∗ 0.32 2.02∗∗∗ 1.47∗∗∗ 7.73∗∗∗

10 bp 2.86∗∗ −0.20 0.37 0.21 0.15 2.99∗∗∗ 0.30 1.70∗∗ 1.15∗∗ 6.59∗∗∗

14 bp 2.64∗∗ −0.21 0.37 0.14 0.13 2.62∗∗ 0.29 1.56∗∗ 1.00∗∗ 6.08∗∗∗

25 bp 2.05∗ −0.25 0.36 −0.05 0.10 1.62∗ 0.26 1.17∗ 0.61 4.69∗∗∗

50 bp 0.72 −0.34 0.35 −0.48 0.02 −0.66 0.19 0.29 −0.28 1.53∗

Break-even cost (bp) 63 698 22 55 43 123 58 42 62
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Panel C: RV-managed strategy

Average |∆wt| 0.62 0.50 0.51 0.48 0.55 0.50 0.60 0.53 0.48 0.63

Transaction costs After-cost alpha (α)

0 bp 3.13∗∗∗ −0.03 0.68 0.78 −0.19 2.60∗∗∗ 0.45 2.43∗∗∗ 1.26∗∗ 6.51∗∗∗

1 bp 3.06∗∗∗ −0.04 0.67 0.76∗ −0.20 2.51∗∗∗ 0.43 2.35∗∗∗ 1.24∗∗ 6.28∗∗∗

10 bp 2.37∗∗ −0.11 0.63 0.64 −0.21 1.68∗∗ 0.22 1.62∗∗∗ 1.01∗∗ 4.25∗∗∗

14 bp 2.07∗∗ −0.15 0.61 0.59 −0.22 1.31∗ 0.13 1.29∗∗ 0.91∗∗ 3.34∗∗∗

25 bp 1.23 −0.25 0.55 0.44 −0.24 0.29 −0.13 0.40 0.64 0.86
50 bp −0.67 −0.47 0.43 0.11 −0.28 −2.03∗∗∗ −0.71 −1.64∗∗∗ 0.02 −4.79∗∗∗

Break-even cost (bp) 41 137 58 28 19 30 51 29

Panel D: Downside RV-managed strategy

Average |∆wt| 0.62 0.52 0.50 0.45 0.56 0.53 0.63 0.52 0.49 0.66

Transaction costs After-cost alpha (α)

0 bp 2.41∗∗ −0.36 0.53 0.74 −0.32 2.09∗∗∗ 0.48 2.40∗∗∗ 1.25∗∗ 6.45∗∗∗

1 bp 2.34∗∗∗ −0.36 0.51 0.74∗ −0.32 1.98∗∗∗ 0.48 2.35∗∗∗ 1.23∗∗∗ 6.23∗∗∗

10 bp 1.71∗∗ −0.40 0.39 0.66 −0.33 1.04∗ 0.45 1.85∗∗∗ 0.99∗∗ 4.24∗∗∗

14 bp 1.43∗ −0.42 0.34 0.62 −0.33 0.62 0.43 1.63∗∗∗ 0.88∗∗ 3.36∗∗∗

25 bp 0.67 −0.47 0.19 0.52 −0.34 −0.54 0.39 1.03∗ 0.59 0.93
50 bp −1.08 −0.58 −0.15 0.30 −0.37 −3.16∗∗∗ 0.30 −0.34 −0.06 −4.59∗∗∗

Break-even cost (bp) 35 39 83 20 134 44 48 29

Figure 4 illustrates the wedge driven by transaction costs. It plots the cumulative

nominal returns to the VIX-managed and RV-managed market factor compared to a buy-

and-hold strategy from January 1993 to April 2023 under transaction costs of 25 basis

points. As in Figure 3, we track a dollar invested in each of the three strategies at the

beginning of the sample. The difference of 100 bp in after-cost alphas of VIX-managed and

RV-managed strategy is visible, as the former remains persistently above the buy-and-hold

value. At the same time, the latter cannot beat the market. The VIX-managed portfolio

would be worth $11.70 at the end of the sample, while the RV-managed portfolio would end

up at $5.68 in April 2023, almost three dollars below the buy-and-hold strategy. Such poor

performance is a direct consequence of more frequent trading: the RV-managed portfolio,

on average, changes its relative exposure to the market more than twice as often as the
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VIX-managed portfolio (cf. Table 6), so higher trading costs evaporate any profit made by

its ability to time the volatility.

Figure 4: Cumulative returns on the VIX-managed market return with trans-
action costs. The figure shows the cumulative returns on a buy-and-hold strategy versus
VIX-managed and RV-managed strategies for the market portfolio from 1993-01 to 2023-04
under transaction costs of 25 basis points.

The transaction costs similarly affect spanning regression alphas for the managed MVE

portfolios. We can observe this from Table 7. Apart from the market portfolio, the tendency

of after-cost alphas for strategies that rely on realized volatility to decline more abruptly

with trading costs than the implied volatility strategies is also apparent for FF3+MOM,

FF5+MOM, HXZ and HXZ+MOM factor universes. They are more robust to trading

frictions: the break-even costs required to set the alphas to zero are also the highest for

the VIX strategy in these universes.

For example, at 25 bp, the VIX-managed MVE portfolio has after-cost alphas of 1.31%

if constructed from FF3+MOM and 0.73% if constructed from FF5+MOM. Both alphas

are statistically significant at the 5% level. The corresponding values for the RV-managed

portfolios are 0.53% and 0.40%, and only the latter is significant at the 5% level. If we
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increase the cost to 50 bp, the VIX-managed alphas drop to 0.96% and 0.48%, respectively,

the former remaining significant at the 5% level and the latter at the 10% level. The point

estimates of the analogous alphas for the RV-based strategy are now −0.21% and 0.07%,

and neither is statistically significant. The break-even costs for the FF3+MOM universe

are 117 bp for the VIX strategy, 65 bp for the downside VIX strategy, 43 bp for the

RV strategy and 47 bp for the downside RV strategy. The corresponding costs for the

FF5+MOM are 97 bp, double the value for any other strategy. The exceptions are the

FF5 universe, where after-cost alphas fare comparably across the strategies, and the FF3

universe, where most alphas are insignificant.

Again, these results originate from very disparate stability of weights across the four

strategies. The VIX-managed strategy has average absolute changes between 0.23 and

0.27. Thus, investors will benefit from this strategy even under tight leverage constraints.5

These values range between 0.47 and 0.52 for the downside VIX-managed strategy. In

contrast, the average absolute changes for the RV-managed strategy are between 0.21 and

0.62, while for the downside RV-managed strategy, they span from 0.17 to 0.62.

The same can be observed for the 176 anomaly portfolios in Table 8. The cross-sectional

mean of time-averaged absolute changes in monthly weights for the VIX-managed portfolios

is 0.25. One must almost double the trades to implement the downside VIX strategy. On

the other hand, the average change in weights required to maintain the RV-managed and

downside RV-managed strategies is around two-thirds. Again, the difference in weight

stability translates directly to the sensitivity of these strategies to transaction costs. We

can also see this directly from Table 9, which reports the results of spanning regressions

for the anomaly portfolios after accounting for transaction costs. For VIX and downside

VIX strategies, the number of positive and significant alphas across the anomaly portfolios
5We verified this for the leverage constraints wt < 1.5 (i.e., a maximum of 50% leverage) and wt < 1

(i.e., no leverage), which is the same set of constraints considered by Moreira and Muir (2017).
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remains stable with transaction costs (or even slightly increases), ranging between 47 and

56. At the same time, the number of positive and significant alphas for the RV strategy

decreases from 38 to 36 and for the downside RV strategy from 41 to 27.

The regression statistics mirror the effect of transaction costs. Within the same strategy,

the cross-sectional average of positive alphas and average RMSE decrease while the average

R2 increases. Across the strategies, the VIX-managed portfolios tend to perform the best

in all these parameters. Their average positive alphas decrease by 35 bp when costs go

from zero to 50 bp, down to 1.74% per year. The same statistic drops by 95 bp and 94 bp

for RV and downside RV strategies, resulting in after-cost alphas that are below 1%. The

average appraisal ratios are comparable within and across the strategies until transaction

costs reach 50 bp. Then, VIX and downside VIX remain stable, while RV and downside

RV fall to 0.10 and 0.08.
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Table 7: This table reports spanning regressions alphas for mean-variance efficient (MVE) port-
folios after accounting for transaction costs. The MVE portfolios are formed using various com-
binations of equity factors. The managed strategies are based on implied volatility and realized
volatility (RV). Panels A through D report the results for the managed strategy based on VIX,
downside VIX, RV and realized downside RV, respectively. Average |∆wt| is the average absolute
change in monthly weights. The reported alphas are in annualized percentage terms. We consider
five levels of transaction costs: 1 bp, 10 bp, 14 bp, 25 bp and 50 bp. We also report zero-cost
alphas for comparison. Break-even costs are the implied transaction costs (in basis points) required
to drive the alphas to zero. The sample period for all regressions is between 1990-01 and 2023-04.
The factors considered are the market excess return (MKT), the Fama and French (1993) three
factors (FF3), the Carhart (1997) momentum factor (MOM), the Fama and French (2015) five
factors (FF5), and the Hou et al. (2014, 2020) three factors (HXZ). The asterisks indicate the usual
significance levels under heteroskedasticity-consistent standard errors of Huber (1967) and White
(1980): *** for significance at 1%; ** for significance at 5%; * for significance at 10%.

MKT FF3 FF3+MOM FF5 FF5+MOM HXZ HXZ+MOM

Panel A: VIX-managed strategy

Average |∆wt| 0.27 0.23 0.24 0.26 0.26 0.25 0.25

Transaction costs After-cost alpha (α)

0 bp 3.07∗∗ 0.56 1.67∗∗∗ 0.61∗ 0.99∗∗∗ 1.44∗∗∗ 1.43∗∗∗

1 bp 3.03∗∗ 0.55 1.65∗∗∗ 0.61∗∗ 0.97∗∗∗ 1.42∗∗∗ 1.41∗∗∗

10 bp 2.73∗∗ 0.46 1.53∗∗∗ 0.54∗∗ 0.88∗∗∗ 1.20∗∗ 1.19∗∗

14 bp 2.60∗∗ 0.42 1.47∗∗∗ 0.51∗ 0.84∗∗∗ 1.10∗∗ 1.09∗∗

25 bp 2.23∗ 0.31 1.31∗∗ 0.43∗ 0.73∗∗∗ 0.83∗ 0.83∗

50 bp 1.39 0.07 0.96∗∗ 0.25 0.48∗ 0.21 0.22

Break-even cost (bp) 91 57 117 84 97 59 59

Panel B: Downside VIX-managed strategy

Average |∆wt| 0.47 0.45 0.47 0.52 0.54 0.47 0.47

Transaction costs After-cost alpha (α)

0 bp 3.39∗∗∗ 0.87∗ 2.24∗∗∗ 0.80∗∗ 1.20∗∗∗ 1.29∗∗ 1.27∗∗

1 bp 3.34∗∗∗ 0.85∗∗ 2.21∗∗∗ 0.79∗∗ 1.18∗∗∗ 1.26∗∗∗ 1.23∗∗∗

10 bp 2.86∗∗ 0.69∗ 1.90∗∗∗ 0.68∗∗ 0.97∗∗∗ 0.93∗∗ 0.91∗∗

14 bp 2.64∗∗ 0.61 1.76∗∗∗ 0.63∗∗ 0.88∗∗∗ 0.79∗ 0.76∗

25 bp 2.05∗ 0.42 1.39∗∗∗ 0.50∗ 0.63∗∗ 0.39 0.37
50 bp 0.72 −0.04 0.53 0.20 0.06 −0.51 −0.53

Break-even cost (bp) 63 48 65 67 53 36 35

Panel C: RV-managed strategy

Average |∆wt| 0.62 0.21 0.45 0.32 0.36 0.42 0.44

Transaction costs After-cost alpha (α)

0 bp 3.13∗∗∗ 0.25 1.27∗∗∗ 0.57∗∗∗ 0.73∗∗∗ 1.24∗∗∗ 1.20∗∗∗

1 bp 3.06∗∗∗ 0.25 1.24∗∗∗ 0.56∗∗∗ 0.72∗∗∗ 1.21∗∗∗ 1.17∗∗∗
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10 bp 2.37∗∗ 0.21 0.97∗∗∗ 0.50∗∗∗ 0.60∗∗∗ 1.01∗∗ 0.93∗∗

14 bp 2.07∗∗ 0.19 0.86∗∗ 0.48∗∗∗ 0.55∗∗∗ 0.92∗ 0.82∗∗

25 bp 1.23 0.15 0.53∗ 0.40∗∗ 0.40∗∗ 0.68 0.53
50 bp −0.67 0.04 −0.21 0.24 0.07 0.11 −0.14

Break-even cost (bp) 41 60 43 85 55 55 45

Panel D: Downside RV-managed strategy

Average |∆wt| 0.62 0.17 0.42 0.35 0.39 0.44 0.46

Transaction costs After-cost alpha (α)

0 bp 2.41∗∗ 0.12 0.99∗∗∗ 0.54∗∗∗ 0.73∗∗∗ 1.14∗∗∗ 1.08∗∗

1 bp 2.34∗∗∗ 0.11 0.97∗∗∗ 0.53∗∗∗ 0.71∗∗∗ 1.12∗∗∗ 1.06∗∗∗

10 bp 1.71∗∗ 0.07 0.78∗∗∗ 0.45∗∗∗ 0.56∗∗∗ 0.90∗∗ 0.81∗∗

14 bp 1.43∗ 0.05 0.69∗∗ 0.41∗∗ 0.49∗∗∗ 0.80∗∗ 0.69∗

25 bp 0.67 0.00 0.46∗ 0.31∗∗ 0.31∗ 0.54∗ 0.39
50 bp −1.08 −0.11 −0.07 0.07 −0.11 −0.06 −0.31

Break-even cost (bp) 35 26 47 58 43 48 39

Table 8: Stability of scaling weights for the 176 anomaly portfolios. The table displays the average
absolute change in monthly weights, |∆wt|, for the managed portfolios. The managed strategies
are based on VIX, downside VIX, RV and realized downside RV, respectively. The sample period
is between 1990-01 and 2023-04. All anomaly portfolios are from Chen and Zimmermann (2022).

Average |∆wt|

VIX 0.25

Downside VIX 0.49

RV 0.66

Downside RV 0.65

31



Table 9: Spanning regressions for the 176 anomaly portfolios after accounting for transaction
costs. The left column of this table reports the results from univariate spanning regressions of
managed portfolio returns on the corresponding original portfolio returns. It shows the number of
alphas that are positive and negative. The numbers in brackets count the alphas significant at the
5% level. The statistical significance of the alpha estimates is based on heteroskedasticity-consistent
standard errors of Huber (1967) and White (1980). The right column displays the cross-sectional
average of positive alphas, average R2, average root mean squared error (RMSE) and the average
appraisal ratio, α/σε, where σε is the RMSE. The managed strategies are based on VIX, downside
VIX, RV and realized downside RV, respectively. We consider five levels of transaction costs: 1 bp,
10 bp, 14 bp, 25 bp and 50 bp. We also report zero-cost results for comparison. The sample period
is between 1990-01 and 2023-04. All anomaly portfolios are from Chen and Zimmermann (2022).

After-cost alpha (α) Regression statistics

Panel A: VIX-managed strategy

Transaction costs α > 0 [Signif.] α < 0 [Signif.] Avg. α > 0 Avg. R2 Avg. RMSE Avg. app. ratio

0 bp 114 [47] 62 [6] 2.09 0.66 26.71 0.11
1 bp 114 [47] 62 [6] 2.08 0.66 26.60 0.12
10 bp 117 [47] 59 [6] 1.98 0.68 25.58 0.12
14 bp 118 [47] 58 [6] 1.94 0.70 25.14 0.12
25 bp 115 [51] 61 [6] 1.92 0.72 23.99 0.12
50 bp 116 [56] 60 [5] 1.74 0.77 21.68 0.13

Panel B: Downside VIX-managed strategy

Transaction costs α > 0 [Signif.] α < 0 [Signif.] Avg. α > 0 Avg. R2 Avg. RMSE Avg. app. ratio

0 bp 124 [47] 62 [6] 1.79 0.58 30.34 0.11
1 bp 123 [42] 53 [4] 1.79 0.59 29.98 0.11
10 bp 126 [44] 50 [4] 1.66 0.67 26.83 0.12
14 bp 127 [43] 49 [4] 1.57 0.70 25.54 0.12
25 bp 131 [43] 45 [1] 1.37 0.77 22.44 0.12
50 bp 131 [50] 45 [5] 1.22 0.83 19.52 0.12

Panel C: RV-managed strategy

Transaction costs α > 0 [Signif.] α < 0 [Signif.] Avg. α > 0 Avg. R2 Avg. RMSE Avg. app. ratio

0 bp 127 [38] 49 [2] 1.94 0.47 35.34 0.12
1 bp 128 [38] 48 [2] 1.90 0.49 34.72 0.12
10 bp 127 [38] 49 [2] 1.75 0.62 29.78 0.13
14 bp 129 [40] 47 [2] 1.64 0.66 28.06 0.13
25 bp 133 [37] 43 [1] 1.37 0.73 25.39 0.13
50 bp 141 [36] 35 [1] 0.99 0.59 30.41 0.10

Panel D: Downside RV-managed strategy

Transaction costs α > 0 [Signif.] α < 0 [Signif.] Avg. α > 0 Avg. R2 Avg. RMSE Avg. app. ratio

0 bp 128 [41] 48 [1] 1.81 0.46 33.42 0.12
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1 bp 128 [41] 48 [1] 1.79 0.48 32.82 0.12
10 bp 130 [41] 46 [1] 1.61 0.61 28.04 0.12
14 bp 131 [42] 45 [1] 1.52 0.65 26.43 0.12
25 bp 131 [36] 45 [2] 1.32 0.71 24.17 0.12
50 bp 136 [27] 40 [3] 0.87 0.53 29.52 0.08

3.3 Timing skewness and kurtosis

VIX-managed portfolios lead to higher after-cost alphas than other strategies. This ro-

bustness to transaction costs directly results from a smoother weight variation. The likely

origin of the relative weight stability compared to the other three strategies is the ability

of the VIX strategy to time kurtosis. A strategy that can predict extreme variations in

next-month returns better than its counterparts has more potential to create anticipatory

adjustments to these variations. As an implied volatility index, VIX embeds the market

expectations of extreme returns by incorporating deep in- and out-of-the-money options

prices. The ability of VIX to capture tail risk was previously documented by many authors,

including Kelly and Jiang (2014), Park (2015), Wang and Yen (2018) and Li et al. (2023).

Figure 5 provides a way to visualize this property. We create time-series sorts based

on VIX and RV for the market portfolio. The VIX sorts are calculated from the daily

VIX levels over the previous month using Equation (4). The RV sorts are calculated from

the previous month’s daily returns on the market portfolio using Equation (6). They are

then exploited to sort the following month’s daily returns on the market portfolio, which

are grouped into quintiles, from months in which VIX and RV were in the lowest fifth to

months in which they were in the highest fifth of their respective values. The figure shows

the skewness and kurtosis of next-month returns for the VIX-managed market portfolio

(top panel) and the RV-managed market portfolio (bottom panel).
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Figure 5: Timing of skewness and kurtosis. This figure represents time-series sorts
based on the previous month’s VIX and realized volatility (RV) for the market portfolio.
The previous month’s VIX and RV time series were calculated by aggregating the daily data
between January 2, 1990, and April 28, 2023, and used to sort the following month’s daily
returns. We use five buckets, where the ”Low/High” shows the properties of cumulative
daily returns over the month in which VIX and RV were in the lowest/highest fifth of
their values. For VIX and RV-managed portfolios, we show the skewness and kurtosis of
next-month returns.
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Table 10: Skewness and kurtosis for the ten equity factors. This table reports sample skewness
(top panel) and kurtosis (bottom panel) for original and managed factor returns. The managed
strategies are based on VIX, downside VIX, RV and realized downside RV, respectively. The sample
period for all regressions is between 1990-01 and 2023-04. MKT, SMB and HML are from Fama and
French (1993), RMW and CMA are from Fama and French (2015), MOM is from Carhart (1997),
IA, ROE and EG are from Hou et al. (2014, 2020) and BAB is from Frazzini and Pedersen (2014).

MKT SMB HML RMW CMA MOM IA ROE EG BAB

Skewness

Original −0.61 0.64 0.18 −0.36 0.55 −1.46 0.61 −0.85 0.20 −0.35

VIX −0.44 0.27 0.20 0.38 0.01 0.47 −0.13 0.10 0.51 0.30
Downside VIX −0.57 0.11 −0.18 0.73 −0.34 0.78 −0.38 0.06 0.56 0.56
RV −1.11 0.00 −1.85 −0.51 −0.12 1.36 −0.06 1.50 −0.01 2.70
Downside RV −1.06 0.02 −0.47 −0.77 −0.10 1.85 −0.22 1.42 0.15 2.31

Kurtosis

Original 4.11 10.26 5.38 12.20 4.64 12.75 4.93 8.09 6.73 6.26

VIX 4.38 5.32 4.75 5.63 5.05 5.26 4.87 4.98 5.28 3.82
Downside VIX 4.97 5.05 6.58 9.97 7.45 6.69 6.32 8.75 8.63 4.35
RV 17.75 6.27 29.32 8.27 4.97 10.43 7.59 9.11 5.15 18.98
Downside RV 19.08 6.36 19.59 11.07 5.09 12.90 7.25 8.92 5.72 14.86

Neither the lagged VIX nor the lagged RV has any relationship with the skewness. The

RV also does not appear to be related to the next-month kurtosis. However, the lagged VIX

shows a mild but noticeable declining pattern: low implied volatility in the current month

increases the probability of extreme returns over the next month. Conversely, the months

when implied volatility is relatively high are most likely followed by months with fewer tail

events. Therefore, VIX can successfully time the market portfolio’s return, volatility and

kurtosis.

Table 10 extends the skewness and kurtosis timing analysis to all ten equity factors.

It compares sample skewness (top panel) and kurtosis (bottom panel) for the original and

managed factor returns across the four strategies. A strategy that times any of these

two moments well will be able to reduce the excess value of the original moment. We see

mixed evidence for skewness timing, although the VIX-based strategy fares better than the
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other three for MKT, MOM, ROE and BAB. Recall that these factors exhibit statistically

significant before- and after-cost alphas. For kurtosis timing, the results are relatively

straightforward: either VIX or downside VIX notably outperforms both RV and downside

RV strategies by a visible margin. For MKT, HML, MOM and BAB, the ability of the

(downside) RV strategy to time the factor volatility comes at the expense of a complete

failure to time their tail risk: the kurtosis of the managed factors is in double digits.

Not surprisingly, MKT and BAB have the highest average absolute variation of weights

in Table 6. On the other hand, VIX-managed factors offer a significantly better tradeoff,

with kurtosis ranging between 3.82 and 5.63.

The ability of VIX to time the tail risk and (to some extent) return asymmetries also

propagates from individual factors to portfolios. Table 11 reports the sample skewness and

kurtosis for MVE portfolios. VIX is relatively successful in reducing the excess skewness of

the efficient portfolios from the Fama-French universe, both with and without momentum.

However, it performs relatively poorly with the HXZ factors. On the other hand, the

kurtosis timing ability is quite strong: the VIX-managed portfolio kurtosis ranges from

4.36 to 6.87. The RV and downside RV strategy performs better than it did for individual

factors. They still produce kurtosis values consistently above those for VIX on a portfolio-

by-portfolio basis.

The same is true for the anomaly portfolios. Table 12 shows cross-sectional averages

of sample skewness and kurtosis for each of the 176 sample portfolios. We observe clear

monotonicity from VIX-managed to downside RV-managed portfolios in skewness and kur-

tosis. The VIX-managed portfolio skewness is only 0.11 on average, while their average

kurtosis is 6.10, close to some efficient portfolios in Table 11. The RV and downside RV

strategy holds relatively well regarding skewness timing but still have comparably higher

average values than VIX (0.35 and 0.48). Their ability to time the tail risk is much worse:
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the average kurtosis values are 9.75 and 10.77.

Table 11: Skewness and kurtosis for mean-variance efficient (MVE) portfolios. This table reports
sample skewness (top panel) and kurtosis (bottom panel) for original and managed MVE portfolios.
The MVE portfolios are formed using various combinations of equity factors. The managed strate-
gies are based on VIX, downside VIX, RV and realized downside RV, respectively. The sample
period for all regressions is between 1990-01 and 2023-04. The factors considered are the market
excess return (MKT), the Fama and French (1993) three factors (FF3), the Carhart (1997) mo-
mentum factor (MOM), the Fama and French (2015) five factors (FF5), and the Hou et al. (2014,
2020) three factors (HXZ).

MKT FF3 FF3+MOM FF5 FF5+MOM HXZ HXZ+MOM

Skewness

Original −0.61 −0.86 −0.91 0.52 0.39 0.48 0.30

VIX −0.44 −0.37 0.15 0.02 0.24 0.55 0.53
Downside VIX −0.57 −0.58 0.18 0.20 0.56 0.53 0.53
RV −1.11 0.40 0.70 0.32 0.46 −0.05 −0.08
Downside RV −1.06 0.83 0.79 0.50 0.56 0.10 0.06

Kurtosis

Original 4.11 7.32 8.86 5.11 7.47 7.33 7.08

VIX 4.38 6.87 4.36 5.18 5.22 5.18 5.32
Downside VIX 4.97 6.26 5.79 6.66 5.98 8.25 8.53
RV 17.75 7.36 6.31 7.65 7.03 5.31 5.38
Downside RV 19.08 9.65 6.00 9.26 9.26 6.32 6.21

Table 12: Skewness and kurtosis for 176 anomaly portfolios. This table reports the average sample
skewness and kurtosis for original and managed anomaly portfolios. The managed strategies are
based on VIX, downside VIX, RV and realized downside RV, respectively. The sample period for all
regressions is between 1990-01 and 2023-04. All anomaly portfolios are from Chen and Zimmermann
(2022).

Avg. skewness Avg. kurtosis

Original 0.07 9.09

VIX 0.11 6.10
Downside VIX 0.24 7.48
RV 0.35 9.75
Downside RV 0.48 10.77
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4 Conclusion

We build on the recent literature on volatility-managed portfolios and explore the possibil-

ity of scaling with implied instead of realized volatility. The scaling is based on the CBOE

implied volatility index (VIX) observed from the daily data over the past month. Using

a large set of test assets involving ten equity factors, six classes of mean-variance efficient

portfolios and 176 anomaly portfolios, we show that the proposed VIX-managed strategies

generally outperform the one based on realized volatility in terms of spanning regression

alphas, with limited improvements in the Sharpe ratios. This situation changes dramat-

ically in the presence of trading frictions. Spanning regression alphas of VIX-managed

portfolios survive under the majority of realistic transaction costs. In contrast, the alphas

for management strategies relying on realized volatility generally diminish under the same

assumptions.

The observed effect can be closely associated with the substantial difference in the

stability of scaling weights. VIX-managed portfolios require the least rebalancing among

the tested strategies and are, therefore, least burdened with frequent trading costs. We

show that this property can be understood by the well-established ability of VIX to time

both variance and kurtosis, creating a potential to buffer the losses originating from near-

term volatility and tail risk. In addition, for the market portfolio in particular, VIX also

has a moderate return timing ability, which can be particularly interesting to a typical

investor in real-time.

The proposed VIX-based portfolio management strategy is easy to implement and of-

fers a robust real-time after-cost performance. It exploits the forward-looking information

embedded in options traded by the most sophisticated market participants. This informa-

tion carries the overall market sentiment and is closely tied to the macroeconomy. The

implied volatility smiles bring an additional layer in timing the extreme returns on top
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of the volatility. This property is not observed in strategies relying on realized variance.

A more formal theoretical explanation of how it affects the utility gains of risk-averse in-

vestors in equilibrium would be an obvious candidate for an immediate extension of this

paper that would help better comprehend the empirical findings presented here.
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